Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
نویسنده
چکیده
A long-standing problem at the interface of artificial intelligence and applied mathematics is to devise an algorithm capable of achieving human level or even superhuman proficiency in transforming observed data into predictive mathematical models of the physical world. In the current era of abundance of data and advanced machine learning capabilities, the natural question arises: How can we automatically uncover the underlying laws of physics from high-dimensional data generated from experiments? In this work, we put forth a deep learning approach for discovering nonlinear partial differential equations from scattered and potentially noisy observations in space and time. Specifically, we approximate the unknown solution as well as the nonlinear dynamics by two deep neural networks. The first network acts as a prior on the unknown solution and essentially enables us to avoid numerical differentiations which are inherently ill-conditioned and unstable. The second network represents the nonlinear dynamics and helps us distill the mechanisms that govern the evolution of a given spatiotemporal data-set. We test the effectiveness of our approach for several benchmark problems spanning a number of scientific domains and demonstrate how the proposed framework can help us accurately learn the underlying dynamics and forecast future states of the system. In particular, we study the Burgers’, Kortewegde Vries (KdV), Kuramoto-Sivashinsky, nonlinear Schrödinger, and NavierStokes equations.
منابع مشابه
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
We introduce physics informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this second part of our two-part treatise, we focus on the problem of data-driven discovery of partial differential equations. Depending on whether the available data is sca...
متن کاملPhysics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
We introduce physics informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this two part treatise, we present our developments in the context of solving two main classes of problems: data-driven solution and data-driven discovery of partial differe...
متن کاملHidden physics models: Machine learning of nonlinear partial differential equations
While there is currently a lot of enthusiasm about “big data”, useful data is usually “small” and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by tim...
متن کاملPDE-Net: Learning PDEs from Data
Partial differential equations (PDEs) play a prominent role in many disciplines such as applied mathematics, physics, chemistry, material science, computer science, etc. PDEs are commonly derived based on physical laws or empirical observations. However, the governing equations for many complex systems in modern applications are still not fully known. With the rapid development of sensors, comp...
متن کاملDeep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
We propose a new algorithm for solving parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) in high dimension, by making an analogy between the BSDE and reinforcement learning with the gradient of the solution playing the role of the policy function, and the loss function given by the error between the prescribed terminal condition and the solut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.06637 شماره
صفحات -
تاریخ انتشار 2018